

Face Recognition Vendor Test
MORPH

Performance of Automated Facial Morph Detection and
Morph Resistant Face Recognition Algorithms

Concept, Evaluation Plan and API
VERSION 2.0.1

Mei Ngan

Patrick Grother
Kayee Hanaoka

Information Access Division
Information Technology Laboratory

September 9, 2020

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 2 of 10

Revision History

 1

Date Version Description

July 12, 2019 2.0 Initial document

September 9, 2020 2.0.1 Update link to General Evaluation Specifications document

 2

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 3 of 10

Table of Contents 3

1. MORPH .. 4 4

1.1. SCOPE .. 4 5

1.2. GENERAL FRVT EVALUATION SPECIFICATIONS .. 4 6

1.3. REPORTING ... 4 7

1.4. ACCURACY METRICS .. 4 8

2. RULES FOR PARTICIPATION ... 5 9

2.1. IMPLEMENTATION REQUIREMENTS .. 5 10

2.2. PARTICIPATION AGREEMENT ... 5 11

2.3. NUMBER AND SCHEDULE OF SUBMISSIONS ... 5 12

2.4. VALIDATION .. 5 13

3. DATA STRUCTURES SUPPORTING THE API ... 5 14

3.1. REQUIREMENT ... 6 15

4. IMPLEMENTATION LIBRARY FILENAME ... 6 16

4.1. FILE FORMATS AND DATA STRUCTURES ... 6 17

4.1.1. ImageLabel describing the format of an image ... 6 18

5. API SPECIFICATION ... 6 19

5.1. HEADER FILE .. 6 20

5.2. NAMESPACE .. 6 21

5.3. API .. 6 22

5.3.1. Implementation Requirements ... 6 23

5.3.2. Interface .. 7 24

5.3.3. Initialization .. 8 25

5.3.4. Single-image Morph Detection ... 8 26

5.3.5. Two-image Differential Morph Detection .. 9 27

5.3.6. 1:1 Comparison ... 10 28
 29

 30

List of Tables 31

Table 3 – Enumeration of image label ... 6 32
Table 6 – API Functions .. 7 33
Table 7 – Initialization .. 8 34
Table 8 – Single-image Morph Detection .. 8 35
Table 9 – Two-image Differential Morph Detection .. 9 36
Table 10 – 1:1 Comparison .. 10 37
 38

39

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 4 of 10

1. MORPH 40

1.1. Scope 41

Facial morphing (and the ability to detect it) is an area of high interest to a number of photo-credential issuance 42
agencies and those employing face recognition for identity verification. The FRVT MORPH test will provide ongoing 43
independent testing of prototype facial morph detection technologies. The evaluation is designed to obtain an 44
assessment on morph detection capability to inform developers and current and prospective end-users. This 45
document establishes a concept of operations and an application programming interface (API) for evaluation of two 46
separate tasks: 47

1. Algorithmic capability to detect facial morphing (morphed/blended faces) in still photographs 48

a. Single-image morph detection of non-scanned photos, printed-and-scanned photos, and images of 49
unknown photo format/origin 50

b. Two-image differential morph detection of non-scanned photos, printed-and-scanned photos, and 51
images of unknown photo format/origin 52

2. Face recognition algorithm resistance against morphing 53

1.2. General FRVT Evaluation Specifications 54

General and common information shared between all Ongoing FRVT tracks are documented in the FRVT General 55
Evaluation Specifications document - https://pages.nist.gov/frvt/api/FRVT_common.pdf. This includes rules for 56
participation, hardware and operating system environment, software requirements, reporting, and common data 57
structures that support the APIs. 58

1.3. Reporting 59

For all algorithms that complete the evaluation, NIST will provide performance results back to the participating 60
organizations. NIST may additionally report and share results with partner government agencies and interested 61
parties, and in workshops, conferences, conference papers, presentations and technical reports. 62
 63
Important: This is a test in which NIST will identify the algorithm and the developing organization. Algorithm results 64
will be attributed to the developer. Results will be machine generated (i.e. scripted) and will include timing, accuracy 65
and other performance results. These will be provided alongside results from other implementations. Results will be 66
expanded and modified as additional implementations are tested, and as analyses are implemented. Results may be 67
regenerated on-the-fly, usually whenever additional implementations complete testing, or when new analyses are 68
added. 69

1.4. Accuracy metrics 70

This test will evaluate algorithmic ability to detect whether an image is a morphed/blended image of two or more 71
faces and/or to correctly reject 1:1 comparisons of morphed images against other images of the subjects used to 72
create the morph (but similarly, correctly authenticate legitimate non-morphed, mated pairs and correctly reject non-73
morphed, non-mated pairs). Per established metrics1,2 for assessment of morphing attacks, NIST will compute and 74
report: 75

1 International Organization for Standardization: Information Technology – Biometric presentation attack detection – Part 3: Testing
and reporting. ISO/IEC FDIS 30107-3:2017, JTC 1/SC 37, Geneva, Switzerland, 2017

2 U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R.
Breithaupt, R. Raghavendra, C. Busch: "Biometric Systems under Morphing Attacks: Assessment of Morphing Techniques and
Vulnerability Reporting", in Proceedings of the IEEE 16th International Conference of the Biometrics Special Interest Group
(BIOSIG), Darmstadt, September 20-22, (2017)

https://pages.nist.gov/frvt/api/FRVT_common.pdf

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 5 of 10

• Attack Presentation Classification Error Rate (APCER) – the proportion of morph attack samples incorrectly 76
classified as bona fide presentation 77

• Bona Fide Presentation Classification Error Rate (BPCER) – the proportion of bona fide samples incorrectly 78
classified as morphed samples 79

• Mated Morph Presentation Match Rate (MMPMR) - the proportion of comparisons where the morphed 80
image successfully authenticates against all constituents 81

• True Acceptance Rate (TAR) – the proportion of non-morphed, mated comparisons that correctly 82
authenticate 83

• False Match Rate (FMR) – the proportion of non-morphed, non-mated comparisons that incorrectly 84
authenticate 85

 86

We will report the above quantities as a function of alpha (the fraction of each subject that contributed to the morph), 87
image compression ratio, image resolution, image size, and others. 88

We will also report error tradeoff plots (BPCER vs. APCER, MMPMR vs. FMR, parametric on threshold). 89

2. Rules for participation 90

2.1. Implementation Requirements 91

Developers are not required to implement all functions specified in this API. Developers may choose to implement 92
one or more functions of this API – please refer to Section 5.3.1 for detailed information regarding implementation 93
requirements. 94

2.2. Participation agreement 95

A participant must properly follow, complete, and submit the FRVT MORPH Participation Agreement. This must be 96
done once, either prior or in conjunction with the very first algorithm submission. It is not necessary to do this for 97
each submitted implementation thereafter. 98

2.3. Number and Schedule of Submissions 99

Currently, the number and schedule of submissions is not regulated, so participants can send submissions at any time. 100
NIST reserves the right to amend this section with submission volume and frequency limits. NIST will evaluate 101
implementations on a first-come-first-served basis and provide results back to the participants as soon as possible. 102

2.4. Validation 103

All participants must run their software through the provided FRVT MORPH validation package prior to submission. 104
The validation package will be made available at https://github.com/usnistgov/frvt. The purpose of validation is to 105
ensure consistent algorithm output between the participant’s execution and NIST’s execution. Our validation set is 106
not intended to provide training or test data. 107

3. Data structures supporting the API 108

The data structures supporting this API are documented in the FRVT - General Evaluation Specifications document 109
available at – https://pages.nist.gov/frvt/api/FRVT_common.pdf with corresponding header file named frvt_structs.h 110
published at https://github.com/usnistgov/frvt. 111

https://www.nist.gov/sites/default/files/documents/2018/01/12/frvt_morph_participation_agreement.pdf
https://github.com/usnistgov/frvt
https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://github.com/usnistgov/frvt

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 6 of 10

3.1. Requirement 112

FRVT MORPH participants should implement the relevant C++ prototyped interfaces of section 5. C++ was chosen in 113
order to make use of some object-oriented features. Any functions that are not implemented should return 114
ReturnCode::NotImplemented. 115

4. Implementation Library Filename 116

The core library shall be named as libfrvt_morph_<provider>_<sequence>.so, with 117

• provider: single word, non-infringing name of the main provider. Example: acme 118

• sequence: a three digit decimal identifier to start at 000 and incremented by 1 every time a library is sent to 119
NIST. Example: 007 120

 121
Example core library names: libfrvt_morph_acme_000.so, libfrvt_morph_mycompany_006.so. 122
Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted 123
library name. 124

4.1. File formats and data structures 125

4.1.1. ImageLabel describing the format of an image 126

Table 1 – Enumeration of image label 127

Return code as C++ enumeration Meaning
enum class ImageLabel {
 Unknown=0, Image origin is unknown or unassigned
 NonScanned=1 Non-scanned photo
 Scanned=2, Printed-and-scanned photo
};

 128

5. API specification 129

Please note that included with the FRVT MORPH validation package (available at https://github.com/usnistgov/frvt) is 130
a “null” implementation of this API. The null implementation has no real functionality but demonstrates mechanically 131
how one could go about implementing this API. 132

5.1. Header File 133

The prototypes from this document will be written to a file named frvt_morph.h and will be available to implementers 134
at https://github.com/usnistgov/frvt. 135

5.2. Namespace 136

All supporting data structures will be declared in the FRVT namespace. All API interfaces/function calls for this track 137
will be declared in the FRVT_MORPH namespace. 138

5.3. API 139

5.3.1. Implementation Requirements 140

Developers are not required to implement all functions specified in this API. Developers may choose to implement 141
one or more functions of Table 2, but at a minimum, developers must submit a library that implements 142

1. Interface of Section 5.3.2, 143

https://github.com/usnistgov/frvt
https://github.com/usnistgov/frvt

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 7 of 10

2. initialize() of Section 5.3.3, and 144

3. AT LEAST one of the functions from Table 2. For any other function that is not implemented, the function 145
shall return ReturnCode::NotImplemented. 146

Table 2 – API Functions 147

Function Section

detectMorph() – single image morph detection of

• Non-scanned photo

• Printed-and-scanned photo

• Image of unknown format

5.3.4

detectMorphDifferentially() – two image differential
morph detection of

• Non-scanned photo
• Printed-and-scanned photo

• Image of unknown format

5.3.5

compareImages() – 1:1 comparison 5.3.6

trainMorphDetector() – training for morph detection Error!
Reference
source not
found.

 148

5.3.2. Interface 149

The software under test must implement the interface Interface by subclassing this class and implementing AT 150
LEAST ONE of the methods specified therein. 151

 C++ code fragment Remarks
1. Class MorphInterface
2. {

public:

3. static std::shared_ptr<Interface> getImplementation(); Factory method to return a managed pointer
to the Interface object. This function is
implemented by the submitted library and
must return a managed pointer to the
Interface object.

4. // Other functions to implement
5. };

There is one class (static) method declared in Interface. getImplementation() which must also be 152
implemented. This method returns a shared pointer to the object of the interface type, an instantiation of the 153
implementation class. A typical implementation of this method is also shown below as an example. 154

 C++ code fragment Remarks
 #include “frvt_morph.h”

using namespace FRVT_MORPH;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<Interface>

Interface::getImplementation()

{

 return std::make_shared<NullImpl>();

}

// Other implemented functions

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 8 of 10

5.3.3. Initialization 155

Before any morph detection or matching calls are made, the NIST test harness will call the initialization function of 156
Table 3. This function will be called BEFORE any calls to fork() are made. This function must be implemented. 157

Table 3 – Initialization 158

Prototype ReturnStatus initialize(

const std::string &configDir, Input

const std::string& configValue); Input

Description

This function initializes the implementation under test and sets all needed parameters in preparation for template
creation. This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to any
morph detection or matching functions via fork().

This function will be called from a single process/thread.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

configValue An optional string value encoding algorithm-specific configuration parameters.
Developers may provide documentation for such configuration parameter(s) in their
submission to NIST. Otherwise, the default value for this parameter will be an
emptry string.

Output
Parameters

None

Return Value See General Evaluation Specifications document for all valid return code values. This function must be
implemented.

 159

5.3.4. Single-image Morph Detection 160

The function of Table 4 evaluates morph detection on non-scanned photos, scanned photos, and photos of unknown 161
formats. A single image along with an associated image label describing the image format/origin is provided to the 162
function for detection of morphing. Both morphed images and non-morphed images will be used, which will support 163
measurement of a morph attack presentation classification error rate (APCER) with a bona fide presentation 164
classification error rate (BPCER). 165

Non-scanned photos 166

Non-scanned photos are digital images known to not have been printed and scanned back in. There are a number of 167
operational use-cases for morph detection on such digital images. 168

Scanned photos 169

While there are existing techniques to detect manipulation of a digital image, once the image has been printed and 170
scanned back in, it leaves virtually no traces of the original image ever being manipulated. So the ability to detect 171
whether a printed-and-scanned image contains a morph warrants investigation. 172

Photos of unknown format 173

In some cases, the format and/or origin of the image in question is not known, so images with “unknown” labels will 174
also be tested. 175

 176

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 177
different computers. 178

Table 4 – Single-image Morph Detection 179

Prototypes ReturnStatus detectMorph(

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 9 of 10

const Image &suspectedMorph, Input

const ImageLabel &label, Input

bool &isMorph, Output

double &score); Output

Description This function takes an input image and associated image label describing the image format/origin, and outputs a
binary decision on whether the image is a morph and a "morphiness" score on [0, 1] indicating how confident the
algorithm thinks the image is a morph, with 0 meaning confidence that the image is not a morph and 1
representing absolute confidence that it is a morph.

Input
Parameters

suspectedMorph Input Image

label ImageLabel (Section 4.1.1) describing the format of the input image

• NonScanned = non-scanned digital photo

• Scanned = a photo that is printed, then scanned

• Unknown = unknown photo format/origin

Output
Parameters

isMorph True if image contains a morph; False otherwise

score A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.

Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

If this function is not implemented for a certain type of image, for example, the function supports non-scanned
photos but not scanned photos, then the function should return ReturnCode::NotImplemented when the

function is called with the particular unsupported image type.

5.3.5. Two-image Differential Morph Detection 180

Two face samples are provided to the function of Table 5 as input, the first being a suspected morphed facial image 181
and the second image representing a known, non-morphed face image of one of the subjects contributing to the 182
morph (e.g., live capture image from an eGate). This procedure supports measurement of whether algorithms can 183
detect morphed images when additional information (provided as the second supporting known subject image) is 184
provided. 185

Similar to single-image morph detection, the function of Table 5 will support non-scanned, scanned, and photos of 186
unknown format/origin. The input image type will be specified by the associated ImageLabel input parameter. 187

 188

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 189
different computers. 190

Table 5 – Two-image Differential Morph Detection 191

Prototypes ReturnStatus detectMorphDifferentially(

const Image &suspectedMorph, Input

const ImageLabel &label, Input

const Image &probeFace, Input

bool &isMorph, Output

double &score); Output

Description This function takes two input images - a known unaltered/not morphed image of the subject (probeFace) and
an image of the same subject that's in question (may or may not be a morph) (suspectedMorph) with an
associated image label describing the image format/origin. This function outputs a binary decision on whether
suspectedMorph is a morph (given probeFace as a prior) and a "morphiness" score on [0, 1] indicating

how confident the algorithm thinks the suspectedMorph is a morph, with 0 meaning confidence that the

suspectedMorph is not a morph and 1 representing absolute confidence that it is a morph.

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 10 of 10

Input
Parameters

suspectedMorph Input Image

 label ImageLabel (Section 4.1.1) describing the format of the suspected morph image
• NonScanned = non-scanned digital photo

• Scanned = a photo that is printed, then scanned

• Unknown = unknown photo format/origin

probeFace An image of the subject known not to be a morph (e.g., live capture image)

Output
Parameters

isMorph True if image contains a morph; False otherwise

score A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.

Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

If this function is not implemented for a certain type of image, for example, the function supports non-scanned
photos but not scanned photos, then the function should return ReturnCode::NotImplemented when the
function is called with the particular unsupported image type.

5.3.6. 1:1 Comparison 192

Two face samples are provided to the function of Table 6 for one-to-one comparison of whether the two images are of 193
the same subject. The expected behavior from the algorithm is to be able to correctly reject comparisons of morphed 194
images against constituents that contributed to the morph. The goal is to show algorithm robustness against 195
morphing alterations when morphed images are compared against other images of the subjects used for morphing. 196
Comparisons of morphed images against constituents should return a low similarity score, indicating rejection of 197
match. Comparisons of unaltered/non-morphed images of the same subject should return a high similarity score, 198
indicating acceptance of match. 199

 200

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 201
different computers. 202

Table 6 – 1:1 Comparison 203

Prototypes ReturnStatus compareImages(

const Image &enrollImage, Input

const Image &verifImage, Input

double &similarity); Output

Description This function compares two images and outputs a similarity score. In the event the algorithm cannot perform the
comparison operation, the similarity score shall be set to -1.0 and the function return code value shall be set
appropriately.

Input
Parameters

enrollImage The enrollment image

 verifImage The verification image

Output
Parameters

similarity A similarity score resulting from comparison of the two images, on the range [0,DBL_MAX].

Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

 204

	1. MORPH
	1.1. Scope
	1.2. General FRVT Evaluation Specifications
	1.3. Reporting
	1.4. Accuracy metrics

	2. Rules for participation
	2.1. Implementation Requirements
	2.2. Participation agreement
	2.3. Number and Schedule of Submissions
	2.4. Validation

	3. Data structures supporting the API
	3.1. Requirement

	4. Implementation Library Filename
	4.1. File formats and data structures
	4.1.1. ImageLabel describing the format of an image

	5. API specification
	5.1. Header File
	5.2. Namespace
	5.3. API
	5.3.1. Implementation Requirements
	5.3.2. Interface
	5.3.3. Initialization
	5.3.4. Single-image Morph Detection
	Non-scanned photos
	Scanned photos
	Photos of unknown format

	5.3.5. Two-image Differential Morph Detection
	5.3.6. 1:1 Comparison

